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Abstract. The propagation of a dicluster-ion (a pair of closely situated ions) beam through a
system consisting of two thin foils is considered in this paper. The effect of wake fields on
the distribution of ions flying out from a foil in the initial beam direction is analysed, as well
as their effect on the number of accelerated and retarded ions registered by the detector. The
increase in the measurement efficiency of the wake fields is discussed.

1. Introduction

The potential of a fast charged particle moving through a material medium is known to be
different from the spherically symmetric Debye or Coulomb potential (Vager and Gemmell
1976, Vageret al 1976). The difference has been revealed in experiments with molecular
ion beams (H+2 , He+

2 , D+
2 , D+

3 , HeH+, HeD+, CH+, OH+, etc) passing through thin foils
(Ag, Au, C, Al, etc). In the numerous experiments carried out since 1965 (Vager and
Gemmell 1976, Vageret al 1976, Gemmell 1980, Remillieux 1980), a beam of molecular
ions was accelerated to an energy of several megaelectronvolts per nucleon and focused on
a 10–100Å thin foil.

On colliding with the target, each molecular ion is stripped of its electrons at distances
much smaller than the foil thickness, as a result of which the so-called ‘Coulomb explosion’
is developed, i.e. ions are scattered by the repulsion forces acting between them. Clearly,
the energy spectrum, angular distribution of ions and other scattering characteristics depend
on the potential created by the ions within the foil.

A peculiarity of the experiments described above was that the distance between the
ions that originated after the ‘Coulomb explosion’ was significantly less than the wake
field wavelength (Gemmell 1980, Remillieux 1980). Thus, the electric field of the charged
particle was measured at small distances in comparison with the wake wavelength. The
theory corresponding to this case was developed by Kaganet al (1978).

Kumbartzkiet al (1982) have considered the propagation of molecular ion beam through
the two-foil system. In this experiment, the molecular ion beam passed through a very thin
foil of thickness a0, the only purpose of which was to strip the molecular ions of its
electrons. After such ionization, the molecular ion decayed into separate ions, due to a
‘Coulomb explosion’, which—upon flying out from the foil—move in a vacuum (in the
form of a dicluster of two particles of like charge). The second foil of thicknessa was
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placed after the first, at a distanced. The motion of ions in the gapd is determined by a
Coulomb potential. By selection of the distanced, one may make the ions interact in the
second foil, under the effect of a long-range wake potential.

Gorbunov and Nersissian (1993) considered the dynamics of the ionic dicluster
propagation through a thin foil, taking into account surface effects.

Recently, interest in these phenomena has grown significantly, particularly in the context
of the ionic thermonuclear fusion problem (Avanzoet al 1992, 1993, Zinamon 1993).

In the presented paper, the statistical theory of propagation of the dicluster-ion beam
through the layer of a plasma-like medium (i.e. a medium containing free electrons) is
constructed, according to the experiment of Kumbartzkiet al (1982). Also the conditions
under which the influence of wake fields is most efficient are considered.

The paper outline is as follows. In section 2, general expressions are obtained for the
distribution functions of ions originating in the ‘Coulomb explosion’ of the initial molecular
beam (Kumbartzkiet al 1982) and being either retarded or accelerated with respect to the
beam (these ions will be called ‘retarded’ and ‘accelerated’ ions in the paper) in the Liouville
equation approximation (Krall and Trivelpiece 1975). General expressions for the number
of retarded and accelerated ions hitting the detector are also found. The generality of the
results obtained is that they are independent of the method of ionization of the molecular
ion beam but they are dependent on the trajectories of motion of the dicluster ions. In
section 3, the general expressions obtained are applied to the calculation of the distribution
function of retarded and accelerated ions emitted from the foil in the direction of motion
of the primary beam. In section 4, the numbers of retarded and accelerated ions hitting the
detector are found.

2. General considerations

Consider a beam of molecular ions having velocityu0 directed along thez axis, which is
normal to the surface of a thin foil. Let the thin foil form an ionic dicluster of molecular
ions, with massesm1 andm2, and chargesQ1 andQ2, respectively.

We shall describe the dicluster beam by a two-particle distribution function
f (r1, r2; u1, u2; t), where

f (r1, r2; u1, u2; t) dr1 dr2 du1 du2

is the number of particles having massesm1, m2 and chargesQ1, Q2 in a differential
phase volume at a time instantt . This function satisfies the Liouville equation (Krall and
Trivelpiece 1975)

∂f

∂t
+ u1 · ∂f

∂r1
+ u2

∂f

∂r2
+ F1

m1

∂f

∂u1
+ F2

m2

∂f

∂u2
= 0 (2.1)

whereF1 andF2 are forces acting at dicluster ions with massesm1 andm2, respectively.
The Liouville equation (2.1) has the following characteristic equations of motion for the

ions:
F1 = m1u̇1 F2 = m2u̇2

u1 = ṙ1 u2 = ṙ2
(2.2)

with the initial conditions (att = 0) r1 = r10, r2 = r20, u1 = u2 = u0.
It is convenient to describe the distribution function at a timet = 0 in the coordinate

system with variables

r0 = r10 − r20 R0 = m1r10 + m2r20

m1 + m2
. (2.3)
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Then, denotingf (r1, r2; u1, u2; t = 0) asf0(00), where00 is the set of variablesr0 and
R0, we may present the solution of equation (2.1) in the following form:

f (0, t) =
∫

d00 f0(00)δ(r1 − r1(00, t))δ(r2 − r2(00, t))

×δ(u1 − u1(00, t))δ(u2 − u2(00, t)). (2.4)

Here0 is the set of variablesr1, r2, u1 andu2, d00 = dr0R0 is the differential volume of
the phase space, whilerj (00, t) anduj (00, t) with j = 1, 2 are solutions to the characteristic
equations (2.2).

We shall also normalize the distribution functionsf0(00) andf (0, t) as follows:∫
d0 f (0, t) =

∫
d00 f0(00) = 2N (2.5)

where d0 = dr1 dr2 du1 du2 is the differential volume of phase space,N is the total number
of molecular ions in the initial beam, while 2N is the total number of ions that were created
after emergence of the beam from the foil. Integration in equations (2.4) and (2.5) is taken
over the entire phase space00.

We shall isolate two integration domainsr0 · u0 < 0 andr0 · u0 > 0 in (2.4) in order
to obtain the distribution functions for accelerated and retarded particles. The first domain
corresponds to a distribution function of retarded particles having massm1 and accelerated
particles having massm2, while the second domain corresponds to the distribution of
retardedm2 particles and acceleratedm1 particles. Integrating these distribution functions
over the variables(r1, u1) and (r2, u2), respectively, one may obtain the expressions for
the distribution functions of particles having massesm2 andm1:

f +
1 (r1, u1, t) = 1

2

∫
r0·u0>0

d00 f0(00)δ(r1 − r1(00, t))δ(u1 − u1(00, t)) (2.6)

f +
2 (r2, u2, t) = 1

2

∫
r0·u0<0

d00 f0(00)δ(r2 − r2(00, t))δ(u2 − u2(00, t)) (2.7)

f −
1 (r1, u1, t) = 1

2

∫
r0·u0<0

d00 f0(00)δ(r1 − r1(00, t))δ(u1 − u1(00, t)) (2.8)

f −
2 (r2, u2, t) = 1

2

∫
r0·u0>0

d00 f0(00)δ(r2 − r2(00, t))δ(u2 − u2(00, t)) (2.9)

in which f ±
1 (r1, u1, t) and f ±

2 (r2, u2, t) correspond to accelerated and retarded particles
with masses equal tom1 and m2, respectively. Domains of integration in (2.6)–(2.9) are
determined by the inequalityr0 · u0 < 0 or r0 · u0 > 0. The origin of the factor12 in
equations (2.6)–(2.9) is due to the bounded character of the integration domain over the
variables(r1, u1) and(r2, u2).

The normalization conditions for distribution functionsf ±
1 (r1, u1, t) andf ±

2 (r2, u2, t)

follow equations (2.6)–(2.9):

f dr1 du1[f +
1 (r1, u1, t) + f −

1 (r1, u1, t)]

=
∫

dr2 du2[f +
2 (r2, u2, t) + f −

2 (r2, u2, t)] = N. (2.10)

To determine the flux densities of the accelerated and retarded particles, we shall make
use of equations (2.6)–(2.9):

j+ = 1
2

∫
r0·u0>0

d00 f0(00)u1(00, t)δ(r1 − r1(00, t))
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+ 1
2

∫
r0·u0<0

d00 f0(00)u2(00, t)δ(r2 − r2(00, t)) (2.11)

j− = 1
2

∫
r0·u0<0

d00 f0(00)u1(00, t)δ(r1 − r1(00, t))

+ 1
2

∫
r0·u0>0

d00 f0(00)u2(00, t)δ(r2 − r2(00, t)). (2.12)

The first terms on the right-hand sides of these expressions correspond to fluxes of
accelerated and retarded particles of massm1, while the second terms describe the same
fluxes of particles of massm2.

Particle velocity distributions may be further obtained from equations (2.6)–(2.9) by
integration over their coordinates:

f ±
1 (u1, t) = 1

2

∫
r0·u0>;<0

d00 f0(00)δ(u1 − u1(00, t)) (2.13)

f ±
2 (u2, t) = 1

2

∫
r0·u0<;>0

d00 f0(00)δ(u2 − u2(00, t)). (2.14)

Note that, at large distances from the foil, the particle velocities become constant; therefore
the distribution functions of velocities should be time independent.

Let a circular detector diaphragm be positioned in the planez = L (and the foil be
situated in the planez = 0), centred at thez axis and having radiusD. Then integration of
the fluxesj+ andj− over the diaphragm and time will give the following expressions for
the total number of accelerated and retarded ions entering the detector:

N+ = 1
2

∫
r0·u0>0

d00 f0(00)η(D − |r⊥1(00, t1)|)

+ 1
2

∫
r0·u0<0

d00 f0(00)η(D − |r⊥2(00, t2)|) (2.15)

N− = 1
2

∫
r0·u0<0

d00 f0(00)η(D − |r⊥1(00, τ1)|)

+ 1
2

∫
r0·u0>0

d00 f0(00)η(D − |r⊥2(00, τ2)|). (2.16)

Here η(x) is the Heaviside function (withη(0) = 1
2), r⊥1 and r⊥2 are the transverse

coordinates of particles, whilet1, τ1 and t2, τ2 are the time instants when accelerated and
retarded particles, respectively, with massesm1 andm2, cross the planez = L. The values
t1, τ1 and t2, τ2 are determined from the following relations:

z1(00, t1) = z2(00, τ2) = L r0 · u0 > 0 (2.17)

z1(00, τ1) = z2(00, t2) = L r0 · u0 < 0 (2.18)

wherez1(00, t) andz2(00, t) are the longitudinal coordinates of particles, which are different
in domainsr0 · u0 < 0 andr0 · u0 > 0 due to difference between the forces acting on the
accelerated and the retarded particles.

Equations (2.13) and (2.14), as well as (2.15) and (2.16), are essentially simplified in
the case of identical ions (i.e. whenm1 = m2 = m, andQ1 = Q2 = Q). In this case, the
initial distribution functionf0(00) is symmetric with respect to the boundaryr0 · u0 = 0
of two domains. Therefore the functionsf +

1 (u1, t) andf +
2 (u2, t) are identical, as well as

f −
1 (u1, t) andf −

2 (u2, t), and equations (2.13) and (2.14) become

f +(u1, t) =
∫

r0·u0>0
d00 f0(00)δ(u1 − u1(00, t)) (2.19)
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f −(u2, t) =
∫

r0·u0>0
d00 f0(00)δ(u2 − u2(00, t)) (2.20)

wheref +(u1, t) and f −(u2, t) are the distribution functions for accelerated and retarded
particles, respectively.

In a similar way, from (2.15) and (2.16) we have

N+ =
∫

r0·u0>0
d00 f0(00)η(D − |r⊥1(00, t1)|) (2.21)

N− =
∫

r0·u0>0
d00 f0(00)η(D − |r⊥2(00, t2)|). (2.22)

The following notation is used in equations (2.19)–(2.22):u1, r⊥1, t1 andu2, r⊥2, t2 are the
velocities, transverse coordinates and crossing positions of a planez = L by accelerated and
retarded particles, respectively; the vectorr0 is directed from the retarded to the accelerated
particle.

Note that, for the spherically symmetric interaction potential (as for example in the
case of ‘Coulomb explosion’ in vacuum), the numbers of accelerated and retarded particles
entering the detector are identical, as follows from (2.21) and (2.22). Deflection from the
spherically symmetric potential for the ion interaction in a foil results in the difference
between the numbersN+ andN−. Therefore by measuring the difference1N = N+ −N−

one may judge the character of particle interaction in thin foils. Kumbartzkiet al (1982)
were the first to carry out this experiment.

Note also that equations (2.13)–(2.16) and (2.19)–(2.22) give a key to a more general
problem, since they are independent of the method by which the molecular ion beam is being
stripped of its electrons. These relations determine the distribution function and number
of particles being detected, taking into account pair correlations, provided that the beam
particle trajectories are known.

One can ignore collisions and interaction between the ions of different diclusters in
equation (2.1), ifn−1/3

0 � u0/ωp, where n0 is the ion beam concentration,ωp is the
plasma frequency of the foil electrons andu0 is the beam velocity. Also the distancel0
at which ionization of the molecular ion takes place should be less than the foil thickness
a0. Let us estimate the validity of these conditions according to the parameters of the ionic
thermonuclear fusion. Indeed, the ion current is usually of orderI0 ' 1 MA (Zinamon
1993) and has a cross sectional area of order 1 cm2. For the energy valueE0 ' 20 MeV,
the molecular hydrogen beam will have a concentration equal ton0 ' 1015 cm−3. Thus,
the average distance between the ions is of the ordern

−1/3
0 ' 103 Å, which is much longer

than the wake wavelength in metallic foils (2πu0/ωp ' 100 Å) (Kumbartzki et al 1982).
The ionization distancel0 may be evaluated from the known expression for ionization

losses (Landau and Lifshitz 1982). Taking the ionization energy for a molecular ion equal
to 10 eV, we obtainl0 ' 7 Å.

3. Distribution of ions flying out from a foil in the beam direction

In this section we shall consider the propagation of a molecular ion beam through a system
of two foils (as in the experiment by Kumbartzkiet al (1982)). The second foil will be
considered as a layer of plasma-like medium.

We shall consider the ions formed after the ‘Coulomb explosion’ to be identical. In real
experiments this is true for H+2 , D+

2 and He+2 molecular ions (Gemmell 1980, Remillieux
1980).
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Let two particles having identical massesm1 = m2 = m and chargesQ1 = Q2 = Q > 0
be interacting by a Coulomb law. Initially, at a timet = 0 (the instant of ‘Coulomb
explosion’), the relative velocitẏr of particles is equal to zero, while their initial distancer

is r0. Whenr � r0, the distance and relative velocity of particles at an instantt are given
by the following expressions:r ' vit and ṙ ' vi = (4Q2/mr0)

1/2; when t � t0 = r0/vi ,
r/r0 ' 1 + (t/2t0)

2 (Landau and Lifshitz 1973).
For a sufficiently thin first foil, the ions passing through the foil may be considered as

interacting by the Coulomb law. Then the upper limit for the foil thickness may be found
to be a0 < 2(u0/vi)r0, whereu0 is the molecular beam velocity(vi � u0). On the other
hand, the thicknessa0 should exceed the ionization lengthl0 for a molecule:a0 > l0.

We shall assume that the gapd between the foils is broad enough for the ions to
be separated by a distance larger thanr0 while passing the gap. Then the following
expression approximate the values ofr and ṙ at the instant when ions enter the second
foil: rc ' (vi/u0)d and ṙc ' vi .

Consider now the distribution function for ions flying out from the second foil in the
direction of u0. For this, we shall make use of equations (2.19) and (2.20). Then, upon
integration overR0 and the azimuth angle ofr0, we have

f (uz) = N

∫ ∞

0
dr0 f0(r0)

∫ π/2

0
dθ sinθδ(uz − uz(00))δ(uρ(00)) (3.1)

where00 denotes the set of variablesr0 and θ (an angle betweenr0 andu0), anduz(00)

anduρ(00) are the longitudinal and transverse components, respectively, of the ion velocity
with respect to thez axis. The following expression for the initial distribution function was
used to obtain (3.1):

f0(00) = 1

2πr2
0

f0(r0)9(R0)∫
dR0 9(R0) = N

∫ ∞

0
dr0 f0(r0) = 1

(3.2)

in which 9(R0) is the initial distribution function of the centreR0 of masses of diclusters,
while f0(r0) is the probability density for the cluster to have a sizer0.

From the axial symmetry of the problem it followsuρ(00) = 0 whenθ = 0. Taking
into account the relation|uρ(00)| = U(r0) sinθ (Gorbunov and Nersissian 1993) we may
evaluate the inner integral in (3.1):

f (uz) = N

2π

∫ ∞

0

dr0

U2(r0)
f0(r0)δ(uz − uz(r0)) (3.3)

whereuz(r0) is the value ofuz(00) at θ = 0. Whenuz = u1z, equation (3.3) describes the
distribution function of accelerated particles and, atuz = u2z, the distribution function of
retarded particles.

The velocity of ions flying out from the second foil in the direction ofu0 is described
by the expressions (see appendix) (Gorbunov and Nersissian 1993)

u1z(r0) = u0 + vi

2

u2z(r0) = u0 − vi

2
− 2(Qkp)2a

mu0
ln(2µ) exp(−γ rc) cos(kprc)

(3.4)
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and

U1(r0) = vi

2

U2(r0) =
∣∣∣∣vi

2
− (µQkp)2a

mu0
exp(−γ rc)kprc sin(kprc)

∣∣∣∣ (3.5)

wherekp = ωp/u0, γ = ν/2u0, µ = u0/v0, andωp, ν and v0 are the plasma frequency,
efficient frequency of collisions, and average value of velocity of electrons in the second
foil, respectively. (v0 is equal to the Fermi velocity in metals and to the thermal velocity
in plasma.) Equations (3.4) and (3.5) were obtained on the assumption that the relative
distance between the ions undergoes a little change during the time of transition through
the second foil(a/u0). This imposes a limit on the thickness of the second foil (Gorbunov
and Nersissian 1993):a < (2/µkp)[mu2

0/2Q2kp]1/2.
In order to evaluate the integral overr0 in (3.3), we make the following observation.

In real experiments where molecular ions pass through thin films, the functionf0(r0) is
non-zero only in a certain intervalrmin 6 r0 6 rmax (Kanter et al 1980). On the other
hand, equations (3.4) and (3.5) were obtained under the assumptions thatrc > r0 and
u0 � vi . Hence, we may obtain the lower and upper limits for integration overr0:
4Q2/mu2

0 � r0 < [4Q2d2/mu2
0]1/3. We shall assume that the following inequalities are

satisfied: rmin � 4Q2/mu2
0 and rmax < (4Q2d2/mu2

0)
1/3. Then equations (3.4) and (3.5)

are valid in the whole interval wheref0(r0) is non-zero. Using again the well known
expression for theδ-function (Landau and Lifshitz 1982) and passing to a new integration
variablevi , we shall obtain from (3.3) the following distribution function of accelerated
particles:

f +(u) = (NQ2/πmu5)f0(Q
2/mu2) (3.6)

whereu = u1z − u0 > 0.
In a similar manner, for retarded particles we obtain from (3.3)

f −(u) = NQ2

πmv̄5
f0

(
Q2

mv̄2

) [
1 − 2

(µQkp)2d

mu2
0

kpa exp

(
−2γ v̄d

u0

)
sin

(
2v̄kpd

u0

)]−2

(3.7)

whereu = u2z−u0 < 0, while the value of̄v is determined from the transcendental equation

v̄ + 2(Qkp)2a

mu0
ln(2µ) exp

(
−2γ v̄d

u0

)
cos

(
2v̄kpd

u0

)
= −u > 0. (3.8)

The solution to (3.8) is unique whenB = 4Q2(k3
pad) ln(2µ)/mu2

0 6 1, and multiple when
B > 1. From a restriction ona, the following restriction onB is obtained:

B < kpd
4 ln(2µ)

µ

(
2Q2kp

mu2
0

)1/2

. (3.9)

The distribution function of retarded ions is non-zero whenQ2/mrmax 6 v̄ 6 Q2/mrmin.
Let rmax satisfy another condition, namely that

rmax � mu2
0

(Qkp)2[2(kpa) ln(2µ)]2
. (3.10)

In this case, the first term in (3.8) is significantly larger than the second, so that in the
square brackets in (3.7) we may usev̄ = −u. Then equation (3.8) will have the following
approximate solution:

v̄ = −u − 2(Qkp)2a

mu0
ln(2µ) exp

(
2γ ud

u0

)
cos

(
2ukpd

u0

)
≡ h(u). (3.11)
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Substitution of this relation into (3.7) gives the final form of distribution function for the
regarded particles:

f −(u) = NQ2

πm

h0(u)

h5(u)
f0

(
Q2

mh2(u)

)
(3.12)

where

h0(u) =
[

1 + 2(µQkp)2d

mu2
0

kpa exp

(
2γ ud

u0

)
sin

(
2ukpd

u0

)]−2

. (3.13)

Consider now a particular example whenf0(r0) is a Gaussian distribution. It is known
from experiments (Kanteret al 1980) thatr̄0 > λ, whereλ is the width of the Gaussian
distribution and̄r0 is the most probable value ofr0. Therefore with a high degree of accuracy
we may take〈r0〉 ' r̄0, rmin ' r̄0 − λ andrmax ' r̄0 + λ, where〈r0〉 is the average value of
r0.

Turning to distribution functions in whichf0(r0) is Gaussian we may observe, on the
basis of equations (3.6) and (3.12), the following. First, there is a peak at the velocity value
u = (Q2/mr̄0)

1/2 ≡ v̄i of accelerated particles, and ath(u) = v̄i for retarded particles.
Secondly, these peaks are not symmetric with respect tou = 0. While for the accelerated
particles the peak position is determined by ther̄0-value, for retarded particles the peak
position oscillates as a function of the vacuum gapd between the foils. The latter peak
is shifted fromu = 0 for a distance larger than̄vi when the major part of the retarded
particles is in a braking phase of the wake wave (i.e. when cos[(2u/u0)kpd] > 0 in (3.11)).
If the retarded particles are predominantly in the accelerating phase of the wake wave
(with cos[(2u/u0)kpd] < 0), then the peak is shifted for values less thanv̄i . Thirdly,
the peak value itself oscillates as a function ofd for the retarded particles. The quantity
h0 < 1 when the majority of retarded particles are in a defocusing phase of the wake wave
(i.e. when sin[(2u/u0)kpd] > 0 in (3.13)). When the opposite inequality holds, most of
the retarded particles are in the focusing phase of the wake wave(sin[(2u/u0)kpd] < 0).
Note especially that, when the quantityh0 � 1, the peak height of retarded particles may
significantly exceed that of the accelerated particles.

In experiments with small clusters (Gemmell 1980, Remillieux 1980), the energy
spectrum of particles flying out from the foil at a zero angle with respect to the initial
beam direction had the following characteristics. The peak for slower particles was always
a little higher than for faster particles and was shifted fromu = 0 a little farther. The same
conclusion may be made on the basis of equations (3.11)–(3.13), if we formally assume
that (2u/u0)kpd � 1.

Finally, we shall give some numerical values. As follows from the paper of Kanteret
al (1980), for molecular hydrogen,̄r0 ' 1.2 Å and λ ' 0.6 Å. Thereforermin- and rmax-
values should bermin ' 0.6 Å and rmax ' 1.8 Å. Meanwhile withu0 ' 4.4 × 109 cm s−1,
k−1
p ' 14.6 Å, ν/ωp = 0.1, µ = 10, a = 400Å, d ' 10 µm we havermin � 2.5×10−6 Å,

rmax � 29 Å and B < 2.
One can conclude from these estimations that equations (3.4) and (3.5) can be used to

obtain the distribution functions of the ions emitted from the foil in the direction of the
vectoru0. The results of such calculations are presented in figures 1 and 2.

4. Number of accelerated and retarded ions registered by the detector

In section 3, we have considered the effect of a wake field on the distribution function of
ions flying out from the foil in the initial beam direction. It would also be interesting to
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Figure 1. Distribution function v̄3
i N

−1f (u) of accelerated and retarded protons versus their
relative velocityu normalized tov̄i = (Q2/mr̄0)

1/2, when the cluster sizerc is less than wake
wavelength (d = 0.15µm). The drawings are based on equations (3.6) and (3.11) through (3.13),
and on the aforementioned values of parameters as well. Peak resolution does not exceed 1%
(Gemmell 1980, Remillieux 1980).

obtain the number of accelerated and retarded ions counted by the detector (Kumbartzkiet
al 1982).

Let the molecular ions be distributed homogeneously in the initial beam, the beam
itself having a cylindrical form of radiusb and lengthl. Let also the cluster axes be
homogeneously distributed within the solid angle d� = sinθ dθ dϕ (0 6 θ 6 θm � π/2),
and the relative velocity of ions be zero at the instant of ‘Coulomb explosion’. In real
experiments, the narrow directed beams(θm � π/2) are obtained by the passage of
diclusters through a quadrupole lens system (Kumbartzkiet al 1982).

Let two identical ions be formed in the process of molecular ionization. Making use
of the relationr⊥j (00, tj ) = R0⊥ + (r⊥0/r⊥0)sj , j = 1, 2 (see appendix) (Gorbunov and
Nersissian 1993), wherer⊥0, R0⊥ are the transverse components of the vectorsr0 andR0,
r⊥0 = |r⊥0|,

s1 = (vi t1/2) sinθ (4.1)

s2 = −t2[(vi/2) sinθ − [2(Qkp)2a/mu0] exp(−γ rc cosθ)K(kprc sinθ) sin(kprc cosθ)]

(4.2)

and integrating in (2.21) and (2.22) over the azimuthal angles ofr0 and R0 (Gradshteyn
and Ryzhik 1965), we may obtain the following expressions:

N± = ND

b sin2(θm/2)

∫ ∞

0
dr0 f0(r0)

∫ θm

0
dθ sinθF (|sj |, D, b) (4.3)
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Figure 2. Distribution function v̄3
i N

−1f (u) of accelerated and retarded protons versus their
relative velocityu normalized tov̄i = (Q2/mr̄0)

1/2, when the cluster sizerc is greater than the
wake wavelength. Curves (a) and (b) correspond tod = 4 µm andd = 6 µm, respectively.

where

F(a, β, γ ) =



min[γ, β]

2 max[γ, β]
if 0 < a < |β − γ |

γ

2πβ
cos−1

(
a2 + γ 2 − β2

2aγ

)
+ β

2πγ
cos−1

(
β2 + a2 − γ 2

2aβ

)
− 1

4πβγ
([a2 − (β − γ )2]

×[(β + γ )2 − a2])1/2 if |β − γ | < a < β + γ

0 if a > β + γ

(4.4)

min[a; b] =
{

a if a 6 b

b if a > b
max[a; b] = a + b − min[a, b]. (4.5)

In equation (4.2),K(x) ' µ2x/2 atx < 1/µ andK(x) = K1(x) at x > 1/µ (see appendix)
(Akopian and Matevossian 1987, Gorbunovet al 1992, Gorbunov and Nersissian 1993),
whereK1(x) is the McDonalds function.

Thus equations (4.1)–(4.5) completely determine the number of accelerated and retarded
particles counted by the detector.
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Equation (4.3) is significantly simplified when the transverse size of the beam is much
less than the diaphragm, i.e.b � D, and when all molecules have identical sizer̄0 (i.e.
f0(r0) = δ(r0 − r̄0)):

N± = N

2 sin2(θm/2)

∫ θm

0
dθ sinθ η(D − |sj |). (4.6)

We shall now find the number of accelerated and retarded particles subject to the
condition thatrc sinθm 6 rD = v0/ωp. This condition restricts the maximum size and
orientation angle of the cluster: 1< kprc 6 1/µθm, θm < 1/µ � 1.

For accelerated particles, from (4.1) and (4.6) we have(t1 ' t2 ' L/u0)

N+

N
= min

{
1;

(
2u0D

viθmL

)2
}

(4.7)

and, for retarded particles,

N−

N
= min

{
1;

(
2u0D

viθmL

)2 [
1 − vi

2u0
µ2(kpa)k2

pr0rc exp(−γ rc) sin(kprc)

]−2 }
. (4.8)

In order to interpret (4.7) and (4.8) we observe that(vi/2u0)θmL is the maximum
deflection of the accelerated particles from thez axis at the instant of entering the detector
(sinθm ' θm � 1). Since (4.7) includes the ratio of diaphragm diameter to maximum
deflection of particles, the beam of accelerated particles will completely pass through the
diaphragm whenD > ρm = (vi/2u0)θmL. If the opposite inequality holds(D < ρm), then
N+ is determined by the ratio of cross section of the diaphragm to that of the beam of
accelerated particles entering the detector.

The number of retarded particles is determined by the effect of the wake field. In
particular, this may mean that the numbers of accelerated and retarded particles are
essentially different. Consider a numerical example. For the values of parametersvi ,
u0, µ, kp and r0 considered in section 3 andD = 0.1 mm, L = 5.13 m, θm = 1.43◦,
rc = 54.17 Å, a = 1366 Å, ν/ωp = 0.1 (at these values,rc and θm have the bounds
14.6 Å < rc < 58.4 Å, θm < 5.7◦), the beam of accelerated protons completely passes
through the diaphragmN+ ' N , while only 25% of the retarded protons enter the detector
(N−/N+ = 0.25).

With increases in the cluster sizerc(rc sinθm > rD) at a fixed maximum angleθm, the
number of retarded particles entering the second foil with values ofρc = rc sinθ 6 rD is
decreased. Meanwhile, the number of retarded particles entering the foil with large values
of ρc = rc sinθ > rD is increased. In the first case, the retarded particle may significantly
alter the direction of its motion after the foil. In the second case, the increment in the
emergence angle for the retarded particle is less than the emergence angle resulting from
‘Coulomb explosion’.

Let rD/ sinθm 6 rc 6 1/(kp sinθm). In the intervalrD/rc 6 θ 6 θm we may use the
approximation forK1(x) ' 1/x, when 1/µ 6 x 6 1, to obtain from (4.2) the following
expression(θ � 1):

|s2(θ)| = vi

2u0
L

∣∣∣∣θ − vi

u0
k2
par0 exp(−γ rc)

sin(kprc)

kprc

1

θ

∣∣∣∣ . (4.9)

The number of accelerated particles is almost independent ofrc (L � d) and is
determined by equation (4.7). Meanwhile, the number of retarded particles that have
originated from clusters with initial orientation 06 θ 6 rD/rc and rD/rc 6 θ 6 θm is
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determined by the following expressions:

N−
1 ' (2N/θ2

m)

∫ rD/rc

0
dθ θη(D − |s2(θ)|) (4.10)

N−
2 ' (2N/θ2

m)

∫ θm

rD/rc

dθ θη(D − |s2(θ)|). (4.11)

In equation (4.10),K(x) ' µ2x/2 and, in (4.11),s2(θ) is determined by equation (4.9).
Evaluation of the integrals (4.10) and (4.11) gives

N−
1

N
= min

{
(µθmkprc)

−2;
(

2u0D

viθmL

)2 [
1 − vi

2u0
µ2(kpa)(k2

pr0rc exp(−γ rc) sin(kprc)

]−2
}

(4.12)

N−
2

N
=



0 if sin(kprc) < 0 and
u0D

viL
<

(
vi

u0
k2
par0 exp(−γ rc)

| sin(kprc)|
kprc

)1/2

θ̃2
2 − θ̃2

1 if sin(kprc) > 0

θ̃2
2 − θ̃2

1 if sin(kprc) < 0 and
u0D

viL
>

(
vi

u0
k2
par0 exp(−γ rc)

| sin(kprc)|
kprc

)1/2

(4.13)

where the following notation was used:

θ̃2 = min(1; θ2/θm) θ̃1 = max[(µθmkprc)
−1; θ1/θm] (4.14)

θ̃2 = θ̃1 if θ2 < (µkprc)
−1 or θ1 > θm (4.15)

θ1 = S


{(

u0D

viL

)2

+ vi

u0
k2
par0 exp(−γ rc)

sin(kprc)

kprc

}1/2

− u0D

viL

 (4.16)

θ2 = u0D

viL
+

{(
u0D

viL

)2

+ vi

u0
k2
par0 exp(−γ rc)

sin(kprc)

kprc

}1/2

. (4.17)

HereS = sgn[sin(kprc)], θ1 andθ2 are the values ofθ at which the retarded particle at the
instance of entering the diaphragm is at a distanceD from thez axis.

As follows from equation (4.12), the number of retarded particles entering the second
foil with small values ofρc(< rD) becomes smaller when the cluster size increases (or
when the vacuum gapd becomes larger). For large values ofrc satisfying the conditions(

u0D

viL

)2

� vi

u0
k2
par0

exp(−γ rc)

kprc

rc < (kpθm)−1 (4.18)

equations (4.16) and (4.17) are significantly simpler. In that limiting case we have

θ1 = v2
i

2u2
0

L

D
k2
par0 exp(−γ rc)

| sin(kprc)|
kprc

(4.19)

θ2 = 2u0D

viL
+ v2

i

2u2
0

L

D
k2
par0 exp(−γ rc)

sin(kprc)

kprc

. (4.20)

Note from (4.19) and (4.20) thatθ1 � θ2. The number of retarded particles having
large values ofρc(> rD) may be obtained in the practically important case when
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ρm(vi/2u0)θmL ' D (Kumbartzkiet al 1982). From (4.14) it follows that̃θ1 � θ̃2 ' 1, so
that the number of retarded particles is determined by a term proportional toθ̃2

2 :

N−

N
≈ θ̃2

2 ≈ min

{
1;

(
2u0D

viθmL

)2

+ 2vi

u0θ2
m

k2
par0 exp(−γ rc)

sin(kprc)

kprc

}
. (4.21)

Kumbartzki et al (1982) consider also the relative variation in the number of retarded
particles:

P = N− − N+

N+ . (4.22)

For two values of maximum deflectionρm of the accelerated particles, we obtain from
(4.7), (4.21) and (4.22) the following relations.

(i) For ρm > D (θm > 2u0D/viL),

P = min

{(ρm

D

)2
− 1; 1

2

(
vi

u0

)3 (
L

D

)2

k2
par0 exp(−γ rc)

sin(kprc)

kprc

}
. (4.23)

(ii) For ρm < D (θm < 2u0D/viL),

P = min

{
0;

(
D

ρm

)2

− 1 + 2vi

u0θ2
m

k2
par0 exp(−γ rc)

sin(kprc)

kprc

}
. (4.24)

In particular, whenρm = D from (4.23) and (4.24) we obtain

P = min

{
0; 2vi

u0θ2
m

k2
par0 exp(−γ rc)

sin(kprc)

kprc

}
. (4.25)

One may see from equations (4.23)–(4.25) and condition (4.18) that the relative variation
in retarded particles oscillates as a function of vacuum gap(rc = (vi/u0)d), with amplitude
much smaller than unity. By a corresponding choice of parameters (see (4.24)), the number
of retarded particles may be decreased. This takes place because the beam of accelerated
particles completely passes through the diaphragm, and their number is not less than the
number of retarded particles. This was, in particular, the pattern observed in the experiment
by Kumbartzkiet al (1982).

Numerically, for the parameters given above and cluster sizerc ' 580Å (d ' 38.7 µm),
the relative variance of retarded particles is 10%.

We observe in conclusion that a proper choice of the vacuum gapd between two thin
foils may increase the effect of the wake field on retarded particles. Thus, for example,
whenrc ' 54.2 Å (d ' 3.6 µm), the number of retarded particles is a quarter of the number
of accelerated particles. Meanwhile, whenrc ' 580 Å, the number of retarded particles is
only 10% less than that of accelerated particles.

Appendix

A brief discussion is given of a method by which equations (3.4), (3.5), (4.1) and (4.2) of
this paper were obtained as well as the limitation imposed on the second foil thickness.

To describe the dynamics of a dicluster of charged particles passing through a thin
foil, one has to determine the electric potential created by particles in the medium. For a
chargeQ moving with velocityu0 in a homogeneous medium characterized by dielectric
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permeabilityε(k, ω) the potential is given by the following relation (Landau and Lifshitz
1982):

ϕ(r, t) = 4πQ

(2π)3

∫
dk

exp[ik · (r − u0t)]

k2ε(k, ku0)
. (A.1)

Usually, the dielectric permeability of a cold plasma is used to evaluateϕ(r, t) (Gorbunovet
al 1992). However, the expression thus obtained has a singularity on the particle trajectory.

In order to obtain the correct expression, taking into account the thermal motion
of electrons in the medium, Akopian and Matevossian suggested a model of dielectric
permeability which is identical with the static expression whenk · u0 < kv0 and with the
dynamic expression whenk · u0 > kv0 (v0 is the same as in section 3). Theirϕ(r, t)

expression is very close to the accurate values of the potential (Wanget al 1981). It is
also identical with the expression of Gorbunovet al (1992) at a distance from the particle
trajectory exceedingv0/ωp (equal to the Debye radius for plasma, or to the Thomas–Fermi
distance for a metal).

Consider now the dynamics of the dicluster formed after the Coulomb explosion of the
molecular ion and entering the second foil (it is assumed, as already mentioned above, that
the inter-particle distance, at the instant when they enter the second foil, exceeds the wave
wavelength). Relative motion(r = r1−r2) of the dicluster in the foil as well as the motion
of its centreR of mass are described by the following equations (Kaganet al 1978):

r̈ = q1q2

µ0r2

r

r
+ f s

2

m1
− f s

2

m2
+ 1

m1
f21(r) − 1

m2
f12(r) (A.2)

(m1 + m2)R̈ = f s
1 + f s

2 + f21(r) + f12(r) (A.3)

whereµ0 is the dicluster reduced mass,f s
1 andf s

2 are forces causing retardation of the first
and second particle (which determine the usual polarization losses), andf21(r) andf12(r)

are the wake forces acting on the first and second particles, respectively. Note that the
general expressions for these forces are obtained from the electric potential (A.1). Analysis
of each term in the right-hand side of equations (A.2) and (A.3) has shown, however, that the
last terms are most significant (Akopian and Matevossian 1987, Gorbunov and Nersissian
1993), so that we have

r̈ = − 1

m2
f12(r) (m1 + m2)R̈ = f12(r) (A.4)

under the assumption thatr2 is the retarded particle position vector. Equations (A.4) are
easily solved under the assumption that the second foil weakly affects the relative vectorr.
If we assume that at the instant of entering the second foilr = rc and ṙ = ṙc, thenf12(r)

may be expanded in series of the differencer − rc. Preserving only the linear term, one
obtains the equations for coupled oscillators whose solutions have the form

r(t) = rc + ṙc

ω
sin(ωt) + g[1 − cos(ωt)] (A.5)

ṙ(t) = ṙc cos(ωt) + ωg sin(ωt). (A.6)

Here the vectorg is determined from the matrix equationAijgj = −f12i (rc), Aij =
∂f12i (rc)/∂xcj , in which gi , f12i (rc), xci are components ofg, f12(rc) and rc, while ω

is the eigenvalue determined from the characteristic equation

det

[
1

m2
Aij − ω2δij

]
= 0 (A.7)

with δij denoting the Kronecker delta.
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As follows from the simplified equations (A.5) and (A.6), the variation inr is small
when ωt < 1, i.e. the time of dicluster propagation through the second foil is smaller
than the interaction time between the particles. Hence one may obtain the limitation on
the second foil thickness which was mentioned in the paper. Upon further expansion of
harmonic functions in (A.5) and (A.6) in power series ofωt and retaining only quadratic
terms in (A.5), the following expressions for the retarded particle coordinates and velocity
may be obtained:

r2(t) = r2c + ṙ2ct + t2

2m2
f12(rc) (A.8)

ṙ2(t) = ṙ2c + t

m2
f12(rc) (A.9)

wherer2c andṙ2c are initial values at the instant when the retarded particle enters the second
foil.

The accelerated particle motion is almost unaffected by the second foil whenωt < 1.
This may be explained by the fact that only the monotonic component of the retarded particle
wake potential affects the motion of the accelerated particle, while the retarded particle feels
the effect of a long-range oscillating wake potential of the accelerated particle, which is
significantly stronger than the monotonic field component (under the imposed limitations).

Thus, if the potential of a particular medium is known, one may obtain the forcef12(r).
In the case whenrc sinθ < v0/ωp, the expression for this force may be obtained from the
potential found by Akopian and Matevossian (1987), while Gorbunovet al (1992) have
found the potential in the opposite caserc sinθ > v0/ωp. Thus the force obtained was used
to determine equations (3.4), (3.5), (4.1) and (4.2).
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